
LEXICON DD8P
Control Protocol documentation

OVERVIEW
The control / monitoring of the DD8P device is done over TCP using the HTTP protocol to send / receive JSON

packets. This protocol is primarily implemented to support the embedded HTTP server for use with a standard

web browser, but non-browser clients can be developed to send / receive the HTTP requests / responses for

control of the device, and requests can be sent with tools such as cURL. The configuration webpage gives a

working example of the control protocol, which may be viewed using the developer tools built into the Chrome

or Firefox web browsers for monitoring network activity.

The embedded webserver supports only one connection at a time. To improve performance, it supports and is

intended to use persistent connections, where a TCP connection is kept open for multiple requests. It will drop

a connection a few seconds after the last activity, and so must be polled once a second or so to keep a connection

open.

HTTP SPEC
This section documents the HTML request / response packets with regards to the DD8P, as the HTTP protocol

defines capabilities not used by the DD8P. The JSON structures will be discussed in later sections of this

document.

HTTP STRUCTURE
The basic format structure of the HTTP request / response messages are similar and consist of the following:

 <Initial Line Note: different for requests vs responses>

 Zero or more header lines

 A blank line terminated with a carriage return/line feed sequence (\r\n)

 <Optional message body>

Note: The header and message body is always separated by a blank line, and all lines in the header end with

a CRLF. HTTP 1.0 defines 16 headers, though none are required. HTTP 1.1 defines 46 headers, and one (Host:)

is required in requests. For the purpose of controlling the DD8P the Content-Length header is also required,

to define the length of the body.

HTTP GET REQUEST
GET requests are used to request information from the device, and consist of the GET command, the URI

(Uniform Resource Identifier) of the information to get, and the HTTP version, followed by the headers and a

blank line terminated by \r\n:

Example Request to get the STATUS from the DD8P: (Note: the DD8P IP address is 192.168.50.4)

2

GET /status HTTP/1.1\r\n
HOST: 192.168.50.4\r\n
Content-Type: application/json\r\n
\r\n

HTTP RESPONSE
The initial line of the response is of the form:

HTTP/1.1 200 OK\r\n

Common initial lines for response messages:

 200 OK

 404 Not Found

 301 Moved Permanently

 302 Moved Temporarily

 500 Server Error

Example Response to the get STATUS from the DD8P: (Note: the DD8P IP address is 192.168.50.4)

HTTP/1.1 200 OK\r\n
Server: Lexicon Embedded Webserver\r\n
Connection: keep-alive\r\n
Access-Control-Allow-Origin: *\r\n
Access-Control-Allow-Methods: GET, POST, PUT\r\n
Content-Type: application/json\r\n
Content-Length: 92\r\n
\r\n
{"cfg_change_ctr":0,"sig_det":[0,0,0,0,0,0,0,0],"sig_clip":[0,0,0,0,0,0,0,0],"trigger_in":0}

The important parts of this above message are the initial line, which indicates that the request was successful.

And the lines “Content-Type” and “Content-Length”, which indicate that the response data is in JSON format

and is 92 bytes long. Please Note: all messages will be in JSON format.

HTTP POST
POST requests are used for sending data to the device, and consist of the POST command, the URI (Uniform

Resource Identifier) of the information to send, and the HTTP version, followed by headers including at least the

Content-Length header, a blank line terminated by \r\n, and a message body containing the JSON message:

Example POST to set setting “auto-powerdown” on the DD8P: (Note: the DD8P IP address is 192.168.50.4)

POST /settings HTTP/1.1\r\n
HOST: 192.168.50.4\r\n
Content-Type: application/json\r\n
Content-Length: 20\r\n
\r\n
{“auto_powerdown”:1}

3

The important parts of this above message are the initial line, which indicates a POST message. And the lines

“Content-Type” and “Content-Length”, which indicate that the response data is in JSON format and is 20 bytes

long. Please Note: all messages will be in JSON format.

POST requests will respond with a message containing the cfg_change_ctr, which can be tracked to detect

changes by other device controllers.

JSON FORMATS
JSON (JavaScript Object Notation) is a text format similar to XML however is simpler and lighter weight.

JSON SYNTAX RULES
 Data is in name/value pairs

 Data is separated by columns

 Curly braces denote “objects” consisting of name/value pairs

 Square brackets denote arrays of values

DATA
The rules for the name/value pairs are field name (always in double quotes), followed by a colon, followed by a

value. Possible values:

 A number (integer or floating point)

 A String (always double quoted)

 Boolean (true/1 or false/0)

 An array (in square brackets comma delimited)

 An object (in curly braces)

 Null

An example of a simple JSON object:

{“DeviceName”: “DD8P-01234”, “IP”:[192, 158, 0, 1], “Debug”:true}

The above JSON text defines an object with three data elements as follows:
(note: this is only an example).

1. Device Name = DD8P-01234 (string)

2. IP = 192.168.0.1 (an array holding the IP address octets)

3. Debug = true (Bool flag)

DD8+ COMMUNICATION
To retrieve information the client will send a HTTP GET request to a specific path (defined later in this document).

The DD8P will respond with an HTTP response packet with the JSON message in the body. To change a setting

on the device, the client will send an HTTP POST requests with the body containing the JSON object with the

new settings.

Any subset of the settings for a particular URI may be set in a single POST request, however, the message must

be less than 512 bytes long.

4

INFO

URI Description

/info General fixed device information. These values are read-only,
this URI will not respond to POST requests.

{"device_type":"Lexicon DD8+","device_name":"DD8P-

000495","mac":"00:1c:e2:00:04:95","ip":"192.168.50.4","app_version":"1.0","b

oot_version":"1.0","build":"d75fd44bb5e84d33c6fbec77475f892459d3e857"}

Data Name Data Type Definition
device_type String “Lexicon DD 8+”
device_name String Name of the DD8P device
mac String Format:

“xx:xx:xx:xx:xx:xx:”
ip String Current IP address assigned

Format:
“aaa.bbb.ccc.ddd”

app_version String Format:
“x.y”

boot_version String Format:
“x.y”

build String Git hash identifying the firmware build

SETTINGS

URI Description

/settings Device-wide settings not part of a
preset.

{"device_name":"DD8P-

000495","use_static_ip":"0","static_ip":"192.168.50.4","netmask":"255.255.25

5.0","gateway":"192.168.50.1","preset_settings_modified":1,"loaded_preset":0

,"config_name":"Default","preset_names":["Preset 1","Preset 2","Preset

3"],"auto_powerdown":1,"green_mode":1}

Data Name Data Type Definition
device_name String Name of the DD8P device. If the

network supports it, this is handed to
the DHCP server to allow identifying the
device on the network by name instead
of IP address.

use_static_ip Boolean If true, the device uses the static IP
instead of attempting to obtain an IP
via DHCP.

static_ip String Format: “aaa.bbb.ccc.ddd”
netmask String Format: “aaa.bbb.ccc.ddd”
gateway String Format: “aaa.bbb.ccc.ddd”
preset_settings_modified Boolean True if the current settings have been

modified since loading or saving a
preset. This value is read-only.

loaded_preset Integer 0-3: Index of the loaded preset, 0 for
default settings.

5

config_name String Name of the current configuration. No
more than 12 characters.

preset_names Array of strings Names of the preset configurations
auto_powerdown Boolean 0 = Off

1 = On
green_mode Boolean 0 = Off

1 = On

STATUS

URI Description

/status Retrieve status values that may change
at any time. These are given a separate
resource identifier to minimize overhead
in polling. These values are read-only,
this URI will not respond to POST
requests.

{"cfg_change_ctr":484,"sig_present":[1,0,0,1,0,0,0,0],"sig_clip":[0,0,0,0,0,

0,0,0],"trigger_in":0}

Returned JSON object

Data Name Data Type Definition
cfg_change_ctr Integer Running count of configuration

changes. Monitor this to detect changes
in configuration by the web UI or other
control applications.

sig_present Array of Booleans The values in this array correspond to
the signal detector blocks connected to
each output in the DSP.

sig_clip Array of Booleans The values in this array correspond to
the clip indicator signals from the
amplifier module.

INPUT

URI Description

/input/INPUT_IDX Settings for a specific input. INPUT_IDX
ranges from 0 to 18:
Inputs 0-7 are analog inputs 1-8.
Inputs 8-15 are digital inputs 1-4 (2 input
channels per physical input).
Inputs 16 and 17 are the bus analog inputs.
Input 18 is an internal pink noise source.

{"input_id":0,"name": "ANALOG

1","input_mix":[1.000000,0.000000,0.000000,0.000000,0.000000,0.000000,0.0000

00,0.000000]}

Returned JSON object

Data Name Data Type Definition
input_id Integer Read only, the index identifying the input.
name String The input name (12 characters max).
input_mix Array of floats The input_mix array corresponds to one

row of the input mixing matrix, each
element corresponding to one processing

6

channel. The values are linear coefficients,
and are typically either 0 or 1.

OUTPUT

URI Description

/output/OUTPUT_IDX Settings for a specific output. OUTPUT_IDX
ranges from 0 to 7, corresponding with
outputs 1-8.

{"output_id":0,"name": "OUTPUT

1","mute":0,"dim":1,"volume":0.000000,"turn_on_volume":0.000000,"max_volume"

:0.000000,"limiter":0,"output_mix":[1.000000,0.000000,0.000000,0.000000,0.00

0000,0.000000,0.000000,0.000000]}

Returned JSON object

Data Name Data Type Definition
output_id Integer Read only, the index identifying the output.
name String The output name (12 characters max).
mute Boolean Output mute state.
dim Boolean Output dim control (-20 dB attenuation).
volume Float Output volume. (in dB)
turn_on_volume Float Output turn-on volume. (in dB)
max_volume Float Output max volume. (in dB)

The actual output volume setting applied
will be the lower of max_volume and
volume.

limiter Float Output limiter threshold. (in dB)
A threshold of 0 dB disables the limiter.

output_mix Array of floats The output_mix array corresponds to one
row of the output mixing matrix, each
element corresponding to one processing
channel. The values are linear coefficients,
and are typically either 0 or 1.

CHANNEL

URI Description

/channel/CHANNEL_IDX Settings for a processing channel.
CHANNEL_IDX is zero-based and ranges from
0 to 7, corresponding with channels A-H.

{"ch_id":0,"trim_volume":0.000000,"volume":0.000000,"mute":0,"bass_boost":0.

000000,"treble_boost":0.000000,"hpf": {"mode":0, "freq":120},"lpf":

{"mode":0, "freq":1000},"delay":0}

Returned JSON object

Data Name Data Type Definition
ch_id Integer Read only, the index identifying the channel.
trim_volume Float The input trim volume, typically used for

adjusting balance between channels in a pair.
(in dB)

volume Float The channel volume. (in dB)
mute Boolean Channel mute

7

bass_boost Float The bass tone control. (in dB)
treble_boost Float The treble tone control. (in dB)
hpf Object An object containing the HPF settings.
hpf.mode Integer The filter mode. Valid settings are:

0 = disabled
1 = 6 dB/octave
2 = 12 dB/octave
3 = 18 dB/octave
4 = 24 dB/octave

hpf.freq Integer The filter corner frequency. (in Hz)
lpf Object An object containing the LPF settings.
lpf.mode Integer The filter mode. Valid settings are 0-4, and are

identical to the HPF modes.
lpf.freq Integer The filter corner frequency. (in Hz)
delay Integer The delay in 48 kHz samples. Range is 0 to

720.

PARAMETRIC EQUALIZER

URI Description

/channel/CHANNEL_IDX/peq/BAND_IDX Settings for a processing channel’s parametric
equalizer bands. CHANNEL_IDX and BAND_IDX
are zero based. CHANNEL_IDX ranges from 0 to
7, BAND_IDX ranges from 0 to 9.

{"ch_id":0,"band_id":0,"enab":0,"gain":0.000000,"freq":1400,"q":1.000000}

Returned JSON object

Data Name Data Type Definition
ch_id Integer Read only, the index identifying the channel.
band_id Integer Read only, the index identifying the band.
enab Boolean Band enable.
gain Float Band gain. (in dB)
freq Integer Band center frequency. (in Hz)
q Float Band Q.

PAIR

URI Description

/pair/PAIR_IDX Settings for a channel pair. PAIR_IDX is zero
based and ranges from 0 to 3.

{"pair_id":0,"mode":0}

Returned JSON object

Data Name Data Type Definition
pair_id Integer Read only, the index identifying the pair.
mode Integer The pair mode. This is only used by the web

configuration UI to indicate if the volume
controls for the two channels in the pair should
be linked.

8

